Scheme of work for Applications and interpretations – Standard level

Wook	Data	Tonic	Timo	Total time
WEEK	Date	Numbers in Standard form	1	Total time
		Calculations with numbers expressed in standard form	1	
1		Arithmetic sequences	1	
		Arithmetic series	1	
		Sigma notation (arithmetic series)	1	
2		Geometric sequences	1	
		Geometric series	1	
		Sigma notation (geometric series)	1	
З		Applications of geometric and arithmetic patterns	1	
		Compound interest	1	
		Annual depreciation and inflation	1	
1		Real value of an investment	1	
4		Introduction to functions	1	
		Domain Range and graph	1	
5		Function potation	1	
		Inverse function	1	
		The graph of a function: its equation $y = f(x)$	1	
6		Creating a sketch from information given	1	
		Using technology to graph functions	1	
		Determine key features of graphs	1	
7		Gradient and v-intercent	1	
,		Point-Gradient form of the equation of a straight line	1	
		Gradient-intercent form of the equation of a straight line	1	
8		General form of the equation of a straight line	1	
0		Parallel and perpendicular lines	1	
		Modelling	1	
9		Linear models	1	
		Finding the point of intersection of two curves or lines using technology	1	
		Simultaneous equations using GDC. Graphically	1	
10		Simultaneous equations using GDC. Using the Equation Solver	1	
		Systems of three linear equations with three unknowns	1	
		Solving problems with simultaneous equations	1	
11	 	Solving polynomial equations	1	
<u> </u>	1	Approximation: decimal places and significant figures	1	
		Estimation	1	
12		Upper and lower bounds of rounded numbers	1	

	Percentage error	1	
	Amortizations and annuities using technology	1	
13	Laws of Exponents with integer exponents	1	
	Introduction to logarithms	1	
	Use of sine, cosine and tangent ratios to find the sides and angles of		
14	right-angled triangles.	2	
_	The sine rule	1	
-	The cosine rule	1	
15	Area of a triangle	1	
	Applications of right and non-right-angled trigonometry, including	1	
-	Angles of elevation and depression		
10	Angles of elevation and depression	1	
10	construction of labelled diagrams from written statements		
-	Length of arc	1	
	Area of a sector The distance between two points in three-dimensional space, and their	1	
17	midpoint	1	
	Volume and surface area of three-dimensional solids including right-	_	
	pyramid, right cone and combinations of these solids	1	
	The size of an angle between two intersecting lines or between a line		
	and a plane	1	
18	Equations of perpendicular bisectors	1	
	Voronoi diagrams: sites, vertices, edges, cells.	1	
	Constructing Voronoi diagrams	1	
19	Addition of a site to an existing Voronoi diagram	1	
	Nearest neighbour interpolation	1	
	Applications of the "toxic waste dump" problem	1	
	Concepts of population, sample, random sample, discrete and		
20	<u>continuous data</u>	1	
-	Reliability of data sources and bias in sampling	1	
-	Interpretation of outliers	1	
21	Sampling techniques and their effectiveness	1	
	Presentation of data (discrete and continuous): frequency distributions	1	
-	Histograms	1	
22	Cumulative frequency cumulative frequency graphs		
22	Cumulative frequency, cumulative frequency graphs	1	
	BOX and Whisker diagrams	1	
22	Intersures of central tendency (mean, median and mode)	1	
23	Estimation of mean from grouped data	1	
-	Modal class	1	
ŀ	Measures of dispersion (IQR, standard deviation and variance)	1	
24	Effect of constant changes on the original data	1	

	Quartiles of discrete data	1	
	 Linear correlation of bivariate data	1	
25	Pearson's product moment correlation coefficient, r.	1	
	Scatter diagrams; lines of best fit by eye, passing through the mean		
	 point	1	
	 Equation of the regression line of y on x	1	
26	Use of the equation of the regression line for prediction purposes	1	
	Interpret the meaning of the parameters, a and b in a linear regression	1	
27	 y - ax + u		
27	<u>Spearman's rank correlation coefficient</u>	Ζ	
	Awareness of the appropriateness and limitations of Pearson's product		
	moment correlation coefficient and Spearman's rank correlation	1	
	 Coefficient, and the effect of outliers of each	1	
20	 Significance levels in values	1	
28		1	
	 Expected and observed frequencies	1	
29	$\frac{1}{1}$ rest for independence: contingency tables, degrees of freedom, <u>critical values</u>	2	
	<u>The χ^2 limitations</u>	1	
	<u>The χ^2 goodness of fit test</u>	1	
30	The t-test	1	
	Use of p-value to compare the means of two populations	1	
31	Using one-tailed and two-tailed tests	1	92 hours

Year 2

	Quadratic models	1	
	Exponential growth, and decay models	1	
31	Direct/inverse variation	1	
	<u>Cubic models</u>	1	
	Sinusoidal models	1	
32	Concepts of trial, outcome, equally likely outcomes, relative frequency, sample space (U) and event	1	
	The probability of an event A	1	
	The complementary events A and A'(not A)	1	
33	Expected number of occurrences	1	
	Use of Venn diagrams, tree diagrams, sample space diagrams and tables of outcomes to calculate probabilities	1	
	Combined events: $P(AEB) = P(A) + P(B) - P(ACB)$	1	
34	Mutually exclusive events: $P(A \cap B) = 0$	1	
	Conditional probability $P(A B) = P(ACB) / P(B)$	1	
	Independent events P(AÇB) = P(A)P(B)	1	
35	Concept of discrete random variables and their probability distribution	1	

	Expected value (mean) E(X) for discrete data	1	
	Applications	1	
36	Binomial distribution	1	
	Mean and variance of the binomial distribution	1	
	The normal distribution and curve	1	
37	Properties of the normal distribution	1	
	Normal probability calculations	1	
	Inverse normal calculations	1	
38	Introduction to the concept of a limit	1	
	Derivative interpreted as gradient function and as rate of change	1	
	Increasing and decreasing functions	1	
39	Graphical interpretation of $f'(x) > 0$; $f'(x) = 0$; $f'(x) < 0$	1	
	<u>Derivative of $f(x) = ax^n$</u>	1	
	<u>The derivative of functions of the form $f(x) = ax^n + bx^{n-1}$</u>	1	
40	Tangents and normals at a given point, and their equations	1	
	Local maximum and minimum points	1	
	Optimisation problems in context	1	
41	Introduction to integration as antidifferentiation	1	
	Anti-differentiation with boundary condition to determine the constant term	1	
	Definite integral using technology	1	
42	Area of a region enclosed by a curve $y = f(x)$ and the x-axis where $f(x) > 0$	1	
	Values of x where the gradient of a curve is zero	1	
43	Approximating areas using the trapezoidal rule	1	38 hours
			130 hours
	You may use 20 hours for the Exploration	20	

150 hours

This is just a suggestion to distribute the topics from the Syllabus over the two Years. You may find useful the links to our website to find resources for most of the topics.